шјес cbac

GCE MARKING SCHEME

MATHEMATICS - M1-M3 \& S1-S3 AS/Advanced

SUMMER 2015

INTRODUCTION

The marking schemes which follow were those used by WJEC for the Summer 2015 examination in GCE MATHEMATICS M1-M3 \& S1-S3. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.
Page
M1 1
M2 10
M3 18
S1 25
S2 28
S3 31

Q Solution
1.

N2L applied to man
$R-M g=M a$
$680=M(9.8+0.2)$
$M=\underline{68}$

N2L applied to Lift and Man
$T-1868 g=1868 a$
$T=\underline{18680(\mathrm{~N})}$

Mark
Notes

M1 $\quad R$ and $M g$ opposing. dim correct
A1

A1
cao

A1
A1 $\mathrm{ft} M$

Q Solution
2. Apply N2L to B
$5 g-T=0$
Resolve perpendicular to plane for A
$R=4 g \cos \alpha$
Apply N2L to A
$T-4 g \sin \alpha-F=0$

At limiting equilibrium $F=\mu R$
$\mu=\frac{F}{R}=\frac{45 g}{48 g}=\frac{15}{16}$
$T=5 g=49$
$F=T-4 g \sin \alpha=\frac{45 g}{13}=\frac{441}{13}=33.9231$
$R=4 g \times \frac{12}{13}=\frac{48 g}{13}=\frac{2352}{65}=36.1846$

Mark
Notes

M1 Friction opposes motion. Allow $4 a$ RHS and/or cos
A1
used
A1
dim correct, all forces. allow $5 a$ RHS $5 g$ and T opposing.
allow sin

A convincing

Mark
Notes

Q Solution

3(a) Conservation of momentum
$3 \times 8+5 \times 2=3 v_{A}+5 v_{B}$
$3 v_{A}+5 v_{B}=34$
Restitution M1
$v_{B}-v_{A}=-\frac{1}{3}(2-8)$
$v_{B}-v_{A}=2$
$3 v_{A}+5 v_{B}=34$
$-3 v_{A}+3 v_{B}=6$
Adding
$8 v_{B}=40$
$v_{B}=5\left(\mathrm{~ms}^{-1}\right)$
$v_{A}=\underline{3\left(\mathrm{~ms}^{-1}\right)}$

3(b) Impulse $=$ change of momentum $I=5 \times 5-5 \times 2=\underline{15(\mathrm{Ns})}$
(a) Conservation of momentum
$4 \quad$ Moments about x-axis

$$
\begin{aligned}
& =5 \times(-1)+2 \times(3)+3 \times 5+6 \times 0 \\
& 16 y=16 \\
& y=1
\end{aligned}
$$

Moments about y-axis

$=5 \times 4+2 \times 2+3 \times(-2)+6 \times(-3)$
B1
$16 x=0$
$x=0$
M1 si
A1 cao

Q
Notes

5(a)

Moments about A

$$
2.8 R_{B}=80 g \times 0.9+15 g \times 1.4
$$

$R_{B}=325.5(\mathrm{~N})$
Vertical forces in equilibrium
$R_{A}+R_{B}=80 g+15 g$
$R_{A}=\underline{605.5(\mathrm{~N})}$

5(b)

Resolve vertically
$1.5 R+R=95 g$
A1
$R=38 g$
Moments about A

M1
A1
A1
$2.8 \times R=80 g \times 0.9+15 g \times x$
$x=\frac{172}{75}=\underline{2.3(\mathrm{~m})}$

M1 3 terms, dim correct Equation required
A1 correct equation
B1 any correct moment
A1 cao
M1
A1
A1
all forces, no extra
cao

Q Solution
6(a)

B1 labels, units and shape
B1 $(0,0)$ to $(10,20)$
B1 $(10,20)$ to $(10+T, 20)$

Mark
Notes

6(b) $v=u+a t, v=20, u=0, t=10$
M1
$20=0+10 a$

$$
a=\underline{2\left(\mathrm{~ms}^{-2}\right)}
$$

6(c) Total distance $=$ area under graph $D=0.5 \times 10 \times 20+20 T$ $D=100+20 T(\mathrm{~m})$

6(d)

$$
\begin{aligned}
& s=u t+0.5 a t^{2}, u=0, t=5+T, a=2 \\
& s=0.5 \times 2 \times(5+T)^{2} \\
& D=25+10 T+T^{2} \\
& \\
& 25+10 T+T^{2}=100+20 T \\
& T^{2}-10 T-75=0 \\
& (T+5)(T-15)=0 \\
& T=15 \\
& D=\underline{400(\mathrm{~m})}
\end{aligned}
$$

A1

M1 attempted
B1 one correct area
A1 cao

A1

M1

A1 cao
A1
cao

Ft exp for D in (d) and (c)

Q Solution

7 Resolve in 80 N direction $80=P \cos 60^{\circ}+Q \cos 45^{\circ}$

Resolve in 25 N direction
$25=P \sin 60^{\circ}-Q \sin 45^{\circ}$
$160=P+Q \sqrt{ } 2$
$50=P \sqrt{ } 3-Q \sqrt{ } 2$
Adding
$(1+\sqrt{ } 3) P=210$
$P=\underline{76.9}$
$Q=\underline{58.8}$

Mark
Notes

M1 A1

A1 cao
A1 cao
penalise once if not 1 d.p.

8(a) Use of $v^{2}=u^{2}+2 a s$ with $u=(\pm) 2.1, a=(\pm) 9.8$,
$s=(\pm) 4$.
$v^{2}=2.1^{2}+2 \times 9.8 \times 4$
$v=9.1$
speed of rebound $=9.1 \times \frac{4}{7}$
$=5.2\left(\mathrm{~ms}^{-1}\right)$

8(b) We require smallest n st $\left(\frac{4}{7}\right)^{n} \times 9.1<1 \quad$ M1 4 bounces

Mark Notes

M1 used
M1 correct method for dot product, no \mathbf{i}, \mathbf{j} 's
A1
m1 $\quad \cos 2 \theta=1-2 \sin ^{2} \theta$ depends on both M's

A1 both values

A1

2(a) Apply N2L to object $1600-R=50 a$
$1600-k t=50 a$
When $t=2, a=-4$
$1600-2 k=50 \times(-4)$
$k=900$
$1600-900 t=50 \frac{\mathrm{~d} v}{\mathrm{~d} t}$
$\frac{\mathrm{d} \nu}{\mathrm{d} t}=32-18 t$

2(b) $\quad \int d v=\int 32-18 t d t$
$v=32 t-9 t^{2}(+\mathrm{C})$
When $t=2, v=41$
$\mathrm{C}=9 \times 2^{2}-32 \times 2+41$
$\mathrm{C}=13$
$v=-9 t^{2}+32 t+13$
When $v=28$,
$28=-9 t^{2}+32 t+13$
$9 t^{2}-32 t+15=0$
$(9 t-5)(t-3)=0$
$t=\frac{5}{9}, 3$

Mark Notes

A1 convincing

M1 increase in power at least once
A1
m1 used

A1 cao
m1 substitution of $v=28$ in c's expression for $v(t)$.

A1 cao
3.

N2L
$T-m g \sin \alpha-R=m a$
$T=\frac{P}{v}$
$\frac{5 P}{16}-6000 \times 9.8 \times \frac{6}{49}-R=6000 \times 2$
$\frac{5 P}{16}-R=19200$

N2L with $a=0$
$T-m g \sin \alpha-R=0$
$\frac{3 P}{16}-6000 \times 9.8 \times \frac{6}{49}-R=0$
$\frac{3 P}{16}-R=7200$

Solving simultaneously

$$
\begin{aligned}
& \frac{2 P}{16}=12000 \\
& P=96000 ; R=10800
\end{aligned}
$$

M1 dim correct, all forces
A1 correct equation
B1 used si

A1 correct equation in $P \& R$

M1
A1
A1 correct equation in $P \& R$
m1 eliminating one variable, depends on both M's

A1 both answers cao

4(a) N 2 L
$(4 t-3) \mathbf{i}+\left(3 t^{2}-5 t\right) \mathbf{j}=0.5 \mathbf{a}$
M1 use of $\mathbf{F}=$ ma
$\mathbf{a}=(8 t-6) \mathbf{i}+\left(6 t^{2}-10 t\right) \mathbf{j}$
$\mathbf{v}=\int \mathbf{a} \mathrm{d} t$
$\mathbf{v}=\left(4 t^{2}-6 t\right) \mathbf{i}+\left(2 t^{3}-5 t^{2}\right) \mathbf{j}+(\mathbf{c})$
When $t=0, \mathbf{v}=8 \mathbf{i}-7 \mathbf{j}$
$\mathbf{c}=8 \mathbf{i}-7 \mathbf{j}$
A1
$\mathbf{v}=\left(4 t^{2}-6 t\right) \mathbf{i}+\left(2 t^{3}-5 t^{2}\right) \mathbf{j}+8 \mathbf{i}-7 \mathbf{j}$
$\mathbf{v}=\left(4 t^{2}-6 t+8\right) \mathbf{i}+\left(2 t^{3}-5 t^{2}-7\right) \mathbf{j}$

4(b) Impulse = change in momentum
When $t=3, \mathbf{v}=26 \mathbf{i}+2 \mathbf{j}$
$0.5(x \mathbf{i}+y \mathbf{j})-0.5(26 \mathbf{i}+2 \mathbf{j})=2 \mathbf{i}-9 \mathbf{j}$
$(x \mathbf{i}+y \mathbf{j})=30 \mathbf{i}-16 \mathbf{j}$
Speed $=\sqrt{30^{2}+(-16)^{2}}$
Speed $=\underline{34 \mathrm{~ms}^{-1}}$
M1 attempted, vector form required
siftc's \mathbf{v}
A1 cao

M1 ftc 's x, y
A1 cao

5(a) $T=15 g$
Hooke's Law
$T=\frac{\lambda x}{l}=\frac{1470 \times x}{0 \cdot 4}$
$x=\frac{15 \times 9 \cdot 8 \times 0 \cdot 4}{1470}$
$x=\underline{0.04(\mathrm{~m})}$

5(b) Let PE be zero at the natural length level.
$\mathrm{PE}=m g h$
Initial PE $=15 \times 9.8 \times(-0.16)$
Initial PE $=-23.52 \mathrm{~J}$
Initial EE $=\frac{1}{2} \times \frac{\lambda(x)^{2}}{l}$
M1 used
Initial $\mathrm{EE}=\frac{1}{2} \times \frac{1470(0 \cdot 16)^{2}}{0 \cdot 4}$
Initial EE $=47.04 \mathrm{~J}$
Final KE $=0.5 m v^{2}$
Final $\mathrm{KE}=7.5 v^{2}$

Final PE $=15 \times 9.8 \times-0.05$
Final PE $=-7.35 \mathrm{~J}$
Final EE $=\frac{1}{2} \times \frac{1470(0 \cdot 05)^{2}}{0.4}$
Final $\mathrm{EE}=4.59375 \mathrm{~J}$
Conservation of energy
$7.5 v^{2}-7.35+4.59375=47.04-23.52$
$v^{2}=3.5035$
$v=\underline{1.8718}=\underline{1.87\left(\mathrm{~ms}^{-1}\right)(\text { to } 2 \text { d.p. })}$

M1
Mark Notes
B1 s

A1 cao
used
A1

A1

B1

M1
A1

A1

6(a) Initial $u_{\mathrm{H}}=35 \cos \alpha=(35 \times 0.6=21)\left(\mathrm{ms}^{-1}\right) \mathrm{B} 1$ si Initial $u_{\mathrm{V}}=35 \sin \alpha=(35 \times 0.8=28)\left(\mathrm{ms}^{-1}\right) \quad$ B1 si
use of $s=u t+0.5 a t^{2}$
with $s=0, u=28$ (c), $a=(\pm) 9.8$
$0=28 t+0.5(-9.8) t^{2}$
$t(28-4.9 t)=0$
$t=(0), \frac{40}{7}$
M1 complete method
A1 $\mathrm{ft} u_{\mathrm{V}}$

A1
Total distance travelled by ball $=\frac{40}{7} \times 21$
$=120(\mathrm{~m})$
Ball will not fall into lake.
A1

6(b) time to tree $=\frac{17 \cdot 5}{21}=\frac{5}{6}$
B1
Use $v=u+a t$ with $u=28(\mathrm{c}), a=(\pm) 9.8, t=5 / 6$ (c) M1
oe complete method
$v=28-9.8 \times \frac{5}{6}$ A1
$v=\frac{119}{6}(=19.8333)$
speed $=\sqrt{\left(\frac{119}{6}\right)^{2}+(21)^{2}} \quad \mathrm{ml}$
speed $=\underline{28.89\left(\mathrm{~ms}^{-1}\right)}$
$\theta=\tan ^{-1}\left(\frac{119}{6 \times 21}\right)$
$\theta=\underline{43.36^{\circ}}$
m1
A1 cao

A1 cao

Resolve vertically
equation, dim correct No extra force
$R \cos 12^{\circ}=1200 \mathrm{~g}$ $R=\underline{12022.73(\mathrm{~N})}$

N2L towards the centre of motion
$R \sin 12^{\circ}=\frac{1200 \times v^{2}}{80}$
$v=\underline{12.91}$

M

A1
A1 cao

8(a)(i) Conservation of energy $0.5 \times 3 \times 5^{2}=$

$$
\begin{aligned}
& 3 \times 9.8 \times 0.8(1-\cos \theta)+0.5 \times 3 \times v^{2} \\
25= & v^{2}+1.6 \times 9.8-1.6 \times 9.8 \cos \theta \\
v^{2}= & \underline{9.32+15.68 \cos \theta}
\end{aligned}
$$

8(a)(ii) N2L towards centre of motion

$$
\begin{aligned}
& T-3 g \cos \theta=\frac{3 v^{2}}{0 \cdot 8} \\
& T=3 g \cos \theta+3.75(9.32+15.68 \cos \theta) \\
& T=\underline{34.95+88.2 \cos \theta}
\end{aligned}
$$

8(b) Greatest value of θ occurs when $T=0$ $34.95+88.2 \cos \theta=0$ $\cos \theta=-\frac{34 \cdot 95}{88 \cdot 2}$
$\theta=\underline{113.34^{\circ}}$
Motion stops being circular when $\theta=113.34^{\circ}$ as string cannot support negative tension. P moves under the action of gravity only.

M1 KE and PE

A1A1

A1 cao

M1 dim correct, 3 terms
$T, 3 g \cos \theta$ opposing
A1
m1 $\mathrm{ft} v^{2}$ of form $\mathrm{a} \pm \mathrm{bsin} / \cos \theta$
A1 cao

M1 ft Tof form $\mathrm{a} \pm \mathrm{bsin} / \cos \theta$

A1 ft a+bcos θ

E1 ft $\theta>90^{\circ}$

Q	Solution	Mark	Notes
4(a)	Tension of spring at $A=\frac{15(y-0 \cdot 3)}{0.3}$ Tension of spring at $B=\frac{20(1 \cdot 4-y-0 \cdot 6)}{0.6}$ When in equilibrium $T_{A}=T_{B}$ $\begin{aligned} & \frac{15(y-0 \cdot 3)}{0.3}=\frac{20(1 \cdot 4-y-0 \cdot 6)}{0.6} \\ & 30 y-9=16-20 y \\ & 50 y=25 \\ & y=0.5(\mathrm{~m}) \end{aligned}$	B1 B1 M1 A1 A1	all correct convincing

\begin{tabular}{|c|c|c|c|}
\hline Q \& Solution \& Mark \& Notes \\
\hline \multirow[t]{2}{*}{4(b)(i)} \& \begin{tabular}{l}
\[
\begin{aligned}
\& T_{A}=\frac{15(0 \cdot 2+x)}{0.3} \\
\& T_{B}=\frac{20(0 \cdot 3-x)}{0.6}
\end{aligned}
\]
\[
\begin{aligned}
\text { Force to right } \& =\frac{20(0 \cdot 3-x)}{0.6}-\frac{15(0 \cdot 2+x)}{0.3} \\
\& =-\frac{250 x}{3}
\end{aligned}
\] \\
Apply N2L to \(P, 7.5 \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}=-\frac{250 x}{3}\)
\[
\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}=-\frac{100}{9} x
\]
\end{tabular} \& B1
M1

M1 \& | either |
| :--- |
| allow =/- |

\hline \& Therefore motion is SHM with $\omega=\frac{10}{3}$.

$$
\text { Period }=\frac{2 \pi}{\omega}=\frac{3 \pi}{5}
$$ \& A1

B1 \& si or $\omega^{2}=100 / 9$ convincing

\hline 4(b)(ii) \& Amplitude $=\underline{0.25(\mathrm{~m})}$ \& B1 \&

\hline 4(b)(iii) \& \[
$$
\begin{aligned}
& \text { Use } v^{2}=\omega^{2}\left(a^{2}-x^{2}\right), \omega=\frac{10}{3}, a=0.25, x=0.2 \\
& v^{2}=\left(\frac{10}{3}\right)^{2}\left(0.25^{2}-0.2^{2}\right) \\
& v=\underline{0.5\left(\mathrm{~ms}^{-1}\right)}
\end{aligned}
$$

\] \& | M1 |
| :--- |
| A1 |
| A1 | \& | ft a and ω. oe |
| :--- |
| cao |

\hline 4(b)(iv) \& \[
$$
\begin{aligned}
& x=a \cos (\omega t) \\
& 0.2=0.25 \cos \left(\frac{10}{3} t\right) \\
& t=\frac{3}{10} \cos ^{-1}\left(\frac{0 \cdot 2}{0 \cdot 25}\right) \\
& t=\underline{0.193(\mathrm{~s})}
\end{aligned}
$$

\] \& | M1 |
| :--- |
| A1 |
| A1 | \& | oe allow sin/cos, c's a, ω. |
| :--- |
| cao |

\hline
\end{tabular}

Q	Solution		Mark
5.			

Q	Solution	Mark	Notes
6	Resolve vertically	M1	equation, no missing and no extra force.
	$R=80 g+20 g(=100 g)$ Resolve horizontally	A1 M1	equation, no missing and no extra force.
	$\begin{aligned} S & =0.6 R \\ & =60 g=588(\mathrm{~N}) \end{aligned}$ Moments about B	A1 M1	equation, no missing and no extra force. Dimensionally correct.
	$\begin{aligned} & 80 g \times 5 \cos \theta+20 g \times 3 \cos \theta=S \times 6 \sin \theta \\ & 360 \sin \theta=460 \cos \theta \\ & \theta=\tan ^{-1}\left(\frac{460}{360}\right)=51.95^{\circ} \end{aligned}$ The ladder is modelled as a rigid rod.	A2 A1 B1	- 1 each error cao

Ques	Solution	Mark	Notes
1(a) (b)	$\begin{aligned} E(X) & =3, \operatorname{Var}(X)=2.1 \quad \text { si } \\ E(Y) & =2 E(X)+1 \\ & =7 \\ \operatorname{Var}(Y) & =4 \operatorname{Var}(X) \\ & =8.4 \\ P(Y=7) & =P(X=3) \\ & =\binom{10}{3} \times 0.3^{3} \times 0.7^{7} \\ & =0.267 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	Award M1 just for this line Award M0A0 for no working Accept 0.6496-0.3828 or $0.6172-0.3504$
2(a)	$\begin{aligned} & \mathrm{P}(\mathrm{~A} \cap \mathrm{~B})=\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})-\mathrm{P}(\mathrm{~A} \cup \mathrm{~B}) \text { oe } \\ & \mathrm{P}(\mathrm{~A} \cap \mathrm{~B})=0.4+0.5-2 \mathrm{P}(\mathrm{~A} \cap \mathrm{~B}) \\ & \mathrm{P}(\mathrm{~A} \cap \mathrm{~B})=0.3 \end{aligned}$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \end{gathered}$	Award B1 for a valid verification
(b)	$\begin{aligned} P(A \mid B) & =\frac{P(A \cap B)}{P(B)} \\ & =\frac{0.3}{0.5}=0.6 \end{aligned}$	M1 A1	Accept the use of a Venn diagram in (b) and (c)
(c)	$\begin{gathered} P\left(B \mid A^{\prime}\right)=\frac{P\left(B \cap A^{\prime}\right)}{P\left(A^{\prime}\right)} \quad\left(=\frac{P(B)-P(B \cap A)}{1-P(A)}\right) \\ =\frac{0.5-0.3}{1-0.4} \\ =\frac{1}{3}(0.33) \end{gathered}$	M1 A1 A1	
3(a)	$\mathrm{P}(\mathrm{A}$ chooses G$)=0.3$	B1	
(b) (c)	$\begin{aligned} \mathrm{P}(\mathrm{~B} \text { chooses } \mathrm{Y}) & =\frac{8}{10} \times \frac{2}{9}+\frac{2}{10} \times \frac{1}{9} \\ & =0.2 \\ \mathrm{P}(\text { Diff colours }) & =\frac{3}{10} \times \frac{7}{9}+\frac{5}{10} \times \frac{5}{9}+\frac{2}{10} \times \frac{8}{9} \\ & =\frac{31}{45} \end{aligned}$	$\begin{gathered} \text { M1A1 } \\ \text { A1 } \\ \text { M1A1 } \\ \text { A1 } \end{gathered}$	Accept 0.2 without working Accept $\frac{{ }^{5} C_{1} \times{ }^{3} C_{1}+{ }^{5} C_{1} \times 2 C_{1}+{ }^{3} C_{1} \times{ }^{2} C_{1}}{{ }^{10} C_{2}}$
$4(\mathbf{a})(\mathrm{i})$ (ii)	$\begin{aligned} \mathrm{P}(X=9) & =\frac{\mathrm{e}^{-10} \times 10^{9}}{9!} \\ & =0.1251 \\ \mathrm{P}(\mathrm{X}<12) & =0.6968 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { M1A1 } \end{gathered}$	Accept $0.4579-0.3328$ or $0.6672-0.5421$ Award M0 if no working seen Award M1A0 if in adjacent row or column
(b)	Looking at the appropriate section of the table, $n=19$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	Award M1A0 for 18 or 20

5(a)(i) (ii) (b)	$\begin{aligned} \hline \mathrm{P}(\text { male and bike }) & =0.6 \times 0.75 \\ & =0.45 \\ \mathrm{P}(\text { owns a bike }) & =0.6 \times 0.75+0.4 \times 0.3 \\ & =0.57 \\ \mathrm{P}(\text { female } \mid \text { bike }) & =\frac{0.12}{0.57} \\ & =0.211 \quad(4 / 19) \mathrm{cao} \end{aligned}$	M1A1 M1A1 A1 B1B1 B1	B1 num, B1 denom FT denominator from (a)
6(a) (i) (ii) (b)	Let $X=$ no. of defective cups so X is $\mathrm{B}(50,0.05)$ $\begin{aligned} P(X=2) & =\binom{50}{2} \times 0.05^{2} \times 0.95^{48} \\ & =0.261 \\ \mathrm{P}(3 \leq X \leq 8) & =0.9992-0.5405 \\ & \text { or } 0.4595-0.0008 \\ & =0.4587 \end{aligned}$ Let $Y=$ no. of defective plates so Y is $\mathrm{B}(250,0.015) \approx \mathrm{Po}(3.75)$ si $\begin{aligned} \mathrm{P}(Y=4) & =\frac{\mathrm{e}^{-3.75} \times 3.75^{4}}{4!} \\ & =0.194 \end{aligned}$	B1 M1 A1 B1B1 B1 B1 M1 A1	si Accept $0.5405-0.2794$ or 0.7206-0.4595 M0A0 if no working Award no marks if no working seen M0A0 if no working
7(a) (b) (c)	$\begin{gathered} k\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{6}\right)=1 \\ k \times \frac{15}{12}=1 \\ k=\frac{4}{5} \\ E(X)=\frac{4}{5}\left(\frac{2}{2}+\frac{3}{3}+\frac{4}{4}+\frac{6}{6}\right) \\ =3.2 \end{gathered}$ The possible pairs are (3,4), (4,3), (2,6), (6,2) $\begin{aligned} \text { Prob } & =\frac{4}{5} \times \frac{1}{3} \times \frac{4}{5} \times \frac{1}{4} \times 2+\frac{4}{5} \times \frac{1}{2} \times \frac{4}{5} \times \frac{1}{6} \times 2 \\ & =0.213(16 / 75) \end{aligned}$	M1 A1 B1 M1A1 A1	Or equivalent Accept verification B1 for (3,4),(2,6) M1A0A0 if factor 2 missing

\begin{tabular}{|c|c|c|c|}
\hline Ques \& Solution \& Mark \& Notes \\
\hline \begin{tabular}{l}
1(a) \\
(b)
\end{tabular} \& \(\left.\begin{array}{rl}H_{0}: \mu \& =120 ; H_{1}: \mu \neq 120 \\ \bar{x} \& =\frac{\Sigma x}{10} \\ \& =119.2 \\ \text { Test statistic } \& =\frac{119.2-120}{\sqrt{1.2^{2} / 10}} \\ \& =-2.11 \\ \text { Value from tables }=0.01743 \\ p \text {-value } \& =0.03486\end{array}\right\}\) \& \[
\begin{gathered}
\text { B1 } \\
\text { M1 } \\
\text { A1 } \\
\text { M1A1 } \\
\hline \mathbf{A 1} \\
\text { A1 } \\
\text { A1 } \\
\text { B1 }
\end{gathered}
\] \& \begin{tabular}{l}
Award M0 if 10 omitted \\
FT from line above Accept 'mean speed has decreased' FT the \(p\)-value if less than 0.05
\end{tabular} \\
\hline 2(a)
(b)

(c) \& | $\begin{aligned} 95^{\text {th }} \text { percentile } & =82+1.645 \times 2.5 \\ & =86.1 \end{aligned}$ |
| :--- |
| Let $X=$ weight of a man, $Y=$ weight of a woman $\begin{aligned} & z_{1}=\frac{68-65}{2}=1.5 \\ & z_{2}=\frac{64-65}{2}=-0.5 \end{aligned}$ $\begin{aligned} & P(Y<1.5)=0.9332 \text { or } P(Y>-0.5)=0.6915 \\ & P(Y<-0.5)=0.3085 \text { or } P(Y>1.5)=0.0668 \\ & P(64<Y<68)=0.6247 \end{aligned}$ |
| Let $U=\sum_{i=1}^{3} X_{i}+\sum_{i=1}^{4} Y_{i}$ $\begin{gathered} \mathrm{E}(U)=3 \times 82+4 \times 65=506 \\ \operatorname{Var}(U)=3 \times 2.5^{2}+4 \times 2^{2}=34.75 \\ z=\frac{500-506}{\sqrt{34.75}}=-1.02 \\ \operatorname{Prob}=0.8461 \end{gathered}$ | \& M1

A1
M1A1
A1
A1
A1
A1
B1
M1A1
M1A1
A1 \& M0 if no working

\hline 3(a)

(b) \& | Let $X, Y=$ measured sugar contents of A,B $\begin{gathered} \left(\sum x=1612 ; \sum y=1584\right) \\ \bar{x}=201.5 ; \bar{y}=198 \end{gathered}$ |
| :--- |
| SE of diff of means $=\sqrt{\frac{1.5^{2}}{8}+\frac{1.5^{2}}{8}}(0.75)$ 99% confidence limits for the difference are $\begin{aligned} & 201.5-198 \pm 2.5758 \times 0.75 \\ & {[1.57,5.43] } \\ & 4.81-2.19=2 z \times 0.75 \\ & z=1.75 \end{aligned}$ |
| Confidence level $=92 \%$ | \& \[

$$
\begin{gathered}
\text { B1B1 } \\
\text { M1A1 } \\
\text { m1A1 } \\
\text { A1 } \\
\text { M1A1 } \\
\text { A1 } \\
\text { A1 }
\end{gathered}
$$

\] \& | M0 if 8 omitted or only one term |
| :--- |
| Award this A1 for z if ml given |
| FT from (a) |

\hline
\end{tabular}

4(a) (b)	Under H_{0}, X is $\mathrm{B}(20,0.4)$ si $\binom{P(X \geq 13)=0.0210}{P(X \geq 14)=0.0065}$ $X \geq 14$ has significance level closest to 1% Let $Y=$ number of hits Under H_{0}, Y is $\mathrm{B}(120,0.4)$ $\approx \mathrm{N}(48,28.8) \mathrm{si}$ $\begin{aligned} \text { Test statistic } & =\frac{54.5-48}{\sqrt{28.8}} \\ & =1.21 \\ p \text {-value } & =0.1131 \end{aligned}$ Insufficient evidence to conclude that his shooting has improved	$\begin{gathered} \hline \text { B1 } \\ \text { M1 } \\ \hline \text { A1 } \\ \\ \hline \mathbf{B 1} \\ \text { B1 } \\ \hline \text { M1A1 } \\ \hline \mathbf{A 1} \\ \text { A1 } \\ \hline \mathbf{B 1} \end{gathered}$	Award M1 for valid attempt at using tables Award M1A0 for 13 or 15 Award M1A0 for incorrect or no continuity correction but FT for following marks No cc gives $z=1.30, p=0.0968$ Wrong cc $\mathrm{z}=1.40, p=0.0808$ FT the p-value
5	Let $X=$ score on a single die. Then $\mathrm{E}(X)=3.5$ and $\operatorname{Var}(X)=\frac{91}{6}-3.5^{2}=\frac{35}{12}$ Let $Y=$ mean of scores on 100 dice. Then by the Central Limit Theorem, $Y \approx \mathrm{~N}(3.5,35 / 1200)$. $\begin{aligned} z & =\frac{3.75-3.5}{\sqrt{35 / 1200}} \\ & =(\pm) 1.46 \\ \text { Prob } & =0.0721 \end{aligned}$	$\begin{gathered} \text { B1 } \\ \text { M1A1 } \\ \text { M1A1 } \\ \text { m1A1 } \\ \hline \text { A1 } \\ \text { A1 } \end{gathered}$	FT their mean and variance Use of continuity correction gives $z=1.43, p=0.0764$
6(a)(i) (ii) (b)	$H_{0}: \mu=1.2 ; H_{1}: \mu<1.2$ Under H_{0}, X is $\operatorname{Po}(12)$ si $\begin{gathered} P(X \leq 9) \\ =0.2424 \end{gathered}$ Insufficient evidence to conclude that the (mean) number of breakdowns has decreased. Under H_{0}, Y is $\operatorname{Po}(120) \approx \mathrm{N}(120,120)$ $\begin{aligned} & z=\frac{101.5-120}{\sqrt{120}} \\ & =-1.69 \\ & p \text {-value }=0.0455 \end{aligned}$ Strong evidence to conclude that the (mean) number of breakdowns has decreased.	B1 B1 M1 A1 B1 B1 M1A1 A1 A1 B1	Accept 12 in place of 1.2 FT the p-value Award M1A0 for incorrect or no continuity correction but FT for following marks No cc gives $z=-1.73, p=0.0418$ Wrong cc, $z=-1.78, p=0.0375$ FT the p-value if less than 0.05

WJEC
245 Western Avenue Cardiff CF5 2YX
Tel No 02920265000
Fax 02920575994
E-mail: exams@wjec.co.uk website: www.wjec.co.uk

